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Abstract

This publication offers an overview of the technology available for formulating inverse problems and correlating
measured responses with simulations from finite element analysis. The application targeted is clearly structural dynamics
athough most of the techniques discussed here originate or find their counterparts in physics and other engineering
fields. After reviewing the state-of-the-art practices in model updating where a mostly linear model is optimized to
satisfy a series of modal criteria of correlation, an assessment of the advantages and limitations of this technology is
offered. Current orientations of inverse problem solving are discussed, including the need to propagate variability
through the simulation; the generation of fast running models; the adequate choice of data metrics for nonlinear
dynamics; sampling strategies for the optimization; and hypothesis testing in the context of multivariate data analysis.

1. Introduction

Inverse problem solving is at the core of
engineering practices as such work generaly involves
designing a system to target a given performance or to
satisfy operating constraints. Increasingly, designers are
faced with shorter design cycles while their testing
capabilities are reduced and the physics they must
understand becomes more sophisticated. The
consequence is the need for new, component-level
testing procedures, larger-size computer models,
coupled-field calculations and more accurate
representations of the physics. To improve the
predictive quality of numerical models and enhance the
capability to extrapolate the response of a system, it is
often necessary to formulate and solve inverse
problems where simulations are compared to field
measurements [1].

In the fiedd of dsructural dynamics,
computational models are developed for predicting the
response of a system when the phenomenon is not
accessible by direct measurement or when numerical
simulations are cheaper than testing. To develop high-
fidelity models, analysts are increasingly obliged to
account for nonlinearity and variability. These two
aspects are particularly emphasized throughout this
publication. In the first case, material nonlinearity (such
as hardening) may be required to represent the behavior
of structural components, geometrical nonlinearity may
result from large displacement and/or large deformation
motions, and the loading applied may excite the
response’s spectral content in the high-frequency range,
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making it more important to account for nonlinearity
and damping properties. In the second case, it is
acknowledged that some design variables are randomly
distributed (for example, the thickness distribution of a
shell after a pressforming process) or that the
environment influences significantly the system. To
provide high-fidelity models, these variations must be
propagated throughout the calculation. Nevertheless,
implementing  sophisticated models does not
necessarily provide a more accurate representation of a
system. After developing a model, it must be verified
that the discretization, mathematical idealization and
other assumptions involved vyield a satisfactory
solution. Capturing “rare” or catastrophic events
occurring at the tails of the probabilistic distributions
involved is also of paramount importance for reliability
analysis and safety assessment. This is known as model
validation and it is usually carried out by comparing the
prediction of a model or family of models to test data.
If the agreement between the two sets is not
satisfactory, design parameters can be optimized to
improve the predictive quality of the models.

The work presented in this publication addresses
the general problem of validating numerical models in
the context of nonlinear structural dynamics, stochastic
simulations and transient excitation. We start by
discussing current trends in computational sciences
(Section 3) and structural dynamics (Section 4). The
publication proceeds in Section 5 with a brief
presentation of the concept of Finite Element (FE)
model updating because it generally constitutes the
starting point of model validation for nonlinear
dynamics. The broader concept of model validation is
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presented in Section 6 and severa research directions
are discussed to illustrate the shift of paradigm that, we
believe, will be necessary to solve inverse, test-analysis
correlation problems for nonlinear and stochastic
structural dynamics.

2. Scope of the Discussion

Our perspective is strongly influenced by many
discussions with experimentalists, analysts, structura
dynamicists, climatologists, physicists and statisticians
from LANL and Sandia National Laboratories (SNL).
Therefore, the point of view presented here will be
more representative of the U.S. and its nationa
laboratories. At the national laboratories, the corner
stone of the research in model validation is the U.S.
Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI), a program that is
developing massively parallel hardware and software
environments for enhancing the modeling, predictive
quality and reliability of computer simulations for non-
conventional, defense applications. Hence, our
“philosophy” of model validation is geared towards
making use of these resources and satisfying the
congtraints associated with the ASCI environment and
the applications specific to LANL. Nevertheless, we
believe that our findings are general enough that they
may be relevant to many other technical communities
and environments. For completeness, the reader is
referred to the work of Worden who presents an
European perspective of similar issues[2].

3. Computational Sciences

Current trends in computational sciences are briefly
discussed. The intent is to show that trends that can
currently be observed in structural dynamics are not
specific to this community. Also, we would like to
promote the idea that experience may be gained from
learning what is being achieved in other scientific
communities.

3.1 What Model for What Purpose?

The dynamics of systems commonly analyzed in
most computational sciences is strongly influenced by
the nature of particular partial differential equations.
When complex phenomena are studied, the evolution
from the system’s initial conditions typically exhibits a
separation of scales behavior. An example is the
modeling of wild fires where small-scale phenomena
must account for the turbulent nature of fire while
large-scale phenomena exhibit coherent structures that
mathematical operators such as the Laplacian may
represent with satisfactory accuracy. In  structura
dynamics, this certainly applies to the phenomena by
which energy is dissipated in a structure. For example,
the Coulomb damping model provides a deterministic,
large-scale description while the phenomenological

behavior is highly stochastic and represented by the so-
caled “stick and dip” a the microscopic level.
Generally, statistical models explain these behaviors by
coupling mean-field theories to large deviation
principles that characterize the most probable states of
the system.

This brings us to our first point. The total
predictability that may be expected from a particular
model depends on the purpose intended for the model.
The traditional approach for model validation (“My
model is valid because it reproduces my test data with
acceptable accuracy...”) may be irrelevant when it
comes to analyzing statistically-accurate models or
phenomenological models that do not necessarily
provide deterministic outputs.

The methodology proposed here focuses on the
validation of statistically-accurate models as opposed to
deterministic models. This focus arises because we
believe that the environmental variability and the
sources of uncertainty in manufacturing tolerances and
assembly procedures must be accounted for to fully
capture the whole spectrum of behavior of the systems
analyzed (from nominal response to catastrophic
failure). Another reason is that the phenomena being
studied are too complicated to be modelled in a
deterministic manner. Nevertheless, our paradigm is
also demonstrated when applied to models that could
be qualified as “physically-accurate” because they
attempt to capture a particular, deterministic behavior
with high fidelity [3]. A second important point is that
the concept of model validation should be strongly
coupled to the quantification of uncertainty, a
relationship that has generally been overlooked by the
conventional finite element model updating technology.
Thisrelationship is further developed in Section 6.

3.2 Current Trends

It is clear that both public and private sources of
funding for research and development in the United
States emphasize the new, “soft” technologies to the
detriment of hard sciences. Analyzing the priorities at
the turn of the century of agencies such as, for example,
the NSF (National Science Foundation) and DARPA
(Defense Advanced Research Projects for the Army)
shows that the vast majority of project funded are in the
following areas:

1) Genetics,

2) Information technology;
3) Computing;

4) Nano-structures.

There is no reason to believe that this trend will not
become even stronger in the coming years, making it
critical for professionals in hard sciences and
engineering disciplines to seek new opportunities. In



light of this, what trademarks make a particular project
attractive to a funding agency? What are the current
trends in computational sciences? Here, we identify
eight such trends that, we believe, characterize recent
advancementsin hard and soft sciences alike:

1) The coupling of different models. To study
complex phenomena, severa models are
developed that must be coupled together. For
example, global climate predictions must represent
the coupling between atmospheric models, ocean
models and ice models. This generaly yields to
important computational and implementation
challenges.

2) The development of broadband models. Models
are increasingly “broadband,” seeking to simulate
an experiment over different time scales (from a
few nano-seconds to a few minutes or a century in
the case of civil infrastructure), frequency scales
(from afew Hertz to afew MHZz) and energy scales
(from afew Wattsto afew GeV).

3) The accurate representation of the geometry.
With the availability of ever-increasing
computational power, smaller discretizations are
sought after to provide a good representation of the
geometry of the system being analyzed. This may
lead to very large computational models where the
small-scale and large-scale dynamics are coupled.

4) The propagation of uncertainty. Stochastic
models must enable the propagation of uncertainty
during the forward calculations. Solving inverse
problems in the presence of uncertainty is, to a
great extent, an issue of open research that we
address briefly in Section 6.

5) Combining data with models. Increasingly,
measured initial conditions, measured boundary
conditions or experimental data sets of other nature
are combined with the models to improve their
representation of a particular, hard-to-model
component or to improve their correlation with test
data. This is generally referred to as “parameter
tuning” in most scientific fields. In structural
dynamics, this has been the subject of considerable
literature in the past years of which the research in
model updating [4-5], damage detection [6] or
component mode synthesis [7] can be cited as
examples.

6) Developing satistical approximations to
expensive computer runs. Polynomia fits, neura
networks, statistical correlation analyses, etc., are
attractive alternatives to computational models, a
procedure here referred to as the substitution of a
“meta-model.” There now is an increasing focus on
developing meta-models that are satistically

accurate and that can be used not only for
interpolating and extrapolating the system’'s
response but also for assessing the information
content of a given combination of input variables.

7) Assessing the distribution of unlikely events. For
reliability and safety assessment, it is of paramount
importance to estimate the “tails’ of the
distribution of a simulation output. Methods for
reliability analysis are becoming commonly
available but their application to large-
dimensional, broadband, coupled-physics models
raises new issues such as efficient sampling and
fast probability integration.

8) The estimation of ensemble properties. Case-by-
case comparison of data sets tends to be replaced
with ensemble comparisons. Without ensemble
averaging, scientific theories such as quantum
mechanics would simply not exist. It also enables
the estimation of the information content of a
particular model using adequate probabilities. An
illustration of this procedure is the area known as
“experimental design” [8].

An example that clearly integrates many of these
trends is the modeling of protein forming in
computational genetics. It is believed that the
interaction between individual molecules can be
modelled with sufficient accuracy using classical
Newtonian mechanics. This allows analysts to derive
the equations of motion anaytically with the major
drawback of requiring the anaysis of very large
nonlinear models (10 to 100 million degrees of
freedom). It is reported in the literature that the time
scale required to capture the first stretching mode of a
protein and the corresponding infra-red emission is in
the order of 10™ second while the time scale required
to capture the shape of the final protein is equal to 0.1
to afew seconds[9].

3.3 What Does it Take to be Predictive?

Even if anayses of this magnitude can be
performed on today’s most powerful super-computers,
the central question remains. What does it take to be
predictive? The five elements generally mentioned as
being critical when it comes to assessing the predictive
accuracy of amodel are;

1) Thegeometry;

2) Thephysics,

3) The sources of uncertainty;
4) Themodel sensitivities;

5) The outcome of the model.

Approximating the geometry and the physics
remains an issue of importance in many scientific fields
such as wild fire modeling, traffic modeling or global



climate prediction. In structural dynamics however, the
capabilities are generaly available to represent any
geometry at any precision level. Similarly, the physics
of the systems dealt with is well described, at least at
the continuum level, by the equations of solid
mechanics and fluid dynamics. Therefore, our
discussion in Section 6 will focus on other aspects even
if it is acknowledged that significant research efforts
are currently being spent in areas such as multi-scale,
high-fidelity material modeling. Modeling uncertainty
and calculating the model’s sensitivities (or estimating
the stetistical correlation of an output y; to an input p;)
may offer significant computational challenges when
nonlinear, stochastic models are involved. Similarly,
defining the outcome of a model assumes that its
purpose can be assessed by adequate features and
metrics. Analysts dealing with complex numerica
simulations that generate several Giga-bytes of output
may be overwhelmed by the amount of data produced.
Data interrogation, data compression and pattern
recognition tools then become key components of the
analysis. These issues are further discussed in Section 6
for nonlinear, stochastic structural dynamics.

4. Structural Dynamics

The purpose of this Section is to specialize the
discussion to the particular field of structural dynamics.
Trends in modeling and testing are briefly discussed
after which we illustrate the current limitations of our
modeling capabilities with an example. This points to
the need for systematic model validation strategies as
outlined in Section 6. Finaly, the future of structural
dynamics and its impact on test-analysis correlation and
inverse problem solving is briefly discussed.

4.1 Testing Versus Modeling

The main reason why numerical models have
become so popular is because it is much less expensive
to use computational time than it is to run a
sophisticated experiment. Many practical situations
a so occur where the phenomenon of interest can not be
measured directly. For example, this is the case with
large space antennas developed for observation and
communication purposes that do not withstand their
own weight in an environment of 1-g of gravity. Hence,
the scientific community has turned to numerical
models that can be parametrized and used to study a
wide variety of situations.

This argument has been reinforced in recent
years by the increasing efficiency of processors, the
greater availability of memory, the breakthrough of
object-oriented data structures together with the
growing popularity of paralel processing whether it
involves computers  with massively pardlé
architectures or networks of single-CPU workstations.
Interestingly enough, the miniaturisation of CPU’s and

their greater efficiency have influenced greatly testing
procedures, making it possible to instrument structures
with hundreds of transducers. Powerful data analysis
and friendly computer graphics are also a driving force
behind the development of non-intrusive, optical
measurement systems such as holography and laser
vibrometry. These technological breakthroughs are not
without mgjor consequences on the way engineers are
analyzing structural systems and on their conception of
test-analysis correlation and inverse problem solving.

An illustration of this evolution is the rapid
development of modeling procedures for nonlinear
dynamics. It is reasonable to foresee that the bottleneck
of computing power will be removed in the near future,
at least when it comes to engineering applications.*
Consequently, research and development efforts in
recent years have been mostly focused on improving
the representation of the geometry and the physics.
Examples are the derivation of small-scale, statistical
models for contact dynamics; the implementation of
high-fidelity, nonlinear material models; or the efforts
to expand our current modeling capabilities to the high
frequency range for predictive acoustics. In spite of
these undeniable advances, very rarely have the issues
of uncertainty quantification and predictability been
raised. Nevertheless, they are central questions when it
comes to assessing whether a numerical simulation is
capable of reproducing with acceptable accuracy the
experiment it is supposed to replace.

4.2 How Complex Can it Get?

An example of complex structural system is now
discussed. The sub-components in a modern weapon
system comprise over 6,000 parts most of which
contribute to the non-structural mass and dynamics.
Modeling this system down to the very details of the
electronics components is critical for performance and
reliability assessments where, for example, it is verified
the acceleration and stress levels do not jeopardize the
system’ s survivability. This forces analysts to represent
the nonlinear dynamics of different joints such as bolts,
welds, threads, compression pads, tapered joints, etc.
This is a challenging task because it involves a good
understanding and high-fidelity modeling of the energy
dissipation mechanisms for each of these scenarios.

The point of this illustration is that, no matter how
powerful computers become, there will always be some
degree of uncertainty in the numerical models due to
unknown interfaces, unknown physics, environmental

4 The ASCI platforms “BlueMountain” and “Red” at LANL
and SNL, respectively, routinely perform over 3 Teraflops
distributed over several thousand computational nodes. This
power may not yet enable high-energy physics simulations
with enough accuracy but it is considered sufficient for most
engineering applications. For reference, see: www.sgi.com/
newsroom/press _releases/2000/may/blue_mountain.html.




variability, parameter and assembly uncertainty,
idealization errors, discretization errors, numerical
errors, etc. Increased computational power allows to
bound some of these sources of uncertainty (such as
discretization and numerical errors), but not all of them
can be reduced to desirable levels. Because the trend of
replacing expensive laboratory or field experiments
with numerical simulations is not going to change,
systematic model validation strategies are needed.

Note that many systems dealt with in industries and
communities other than the U.S. national laboratories
share similar characteristics: distribution of sub-
systems and components, interface dynamics, multi-
scale behavior; etc. Representing the dynamics of an
automobile door and the interaction between the frame
and the window, for example, is quite challenging
especialy when it comes to acoustic predictions.

4.3 Speculative Outlook

When analyzing the dynamic response of a complex
system using the FE method, it is not acceptable to
neglect the contribution of an important component,
joint or interface. In the past, neglected dynamics were
accounted for by tuning parameters in the model to
agree with the experimental data. For example, the
damping (moda or other) was determined “ad hoc”
using test data obtained from testing the fully
assembled system. Then, the identified damping
properties were added to the model to improve its
predictive accuracy.

At present, some of the full-scale testing
capabilities which formerly existed at the U.S. national
|aboratories and many other facilities in the automotive,
aerospace and civil engineering communities are no
longer functional. Therefore, it is no longer possible to
reconcile a mode with experimental data for al
environments. In the future, models will be constructed
with limited use of these expensive, full-scale test data
sets. In addition, it is our opinion that structural
dynamics in the 21% century will become increasingly:

1) Nonlinear;

2) Non-structural;
3) Non-modal;

4) High bandwidth;
5) Multi-physics.

In these conditions, can the concept of FE model
updating that has been developed for linear, modal
dynamics be generalized? |s FE model updating the
correct answer to model validation? What “features’
other than the conventional mode shapes and resonant
frequencies can be extracted from the data to
characterize the response of a nonlinear system? How
to quantify the total uncertainty of an experiment? How
to propagate the parametric uncertainty of a humerical

simulations? These are some of the questions that we
try to address in the remainder.

5. Finite Element Model Updating

The technology available for the optimisation of
nonlinear dynamic systems based on test-analysis
correlation is briefly reviewed. We start by presenting
the conventional approach to FE model updating. In
particular, those elements that could make it possible to
apply the available technology to nonlinear systems are
discussed. Then, the approach based on optimal error
control is summarized. It proposes a different
formulation of the inverse problem that is better suited
to the optimization of both parametric and non-
parametric models for nonlinear dynamics.

5.1 Conventional Approach

Finite element model updating for linear and
nonlinear dynamics generally consists in formulating
criteria for measuring the correlation between test data
and FE results. If we consider, first, any type and
source of nonlinearity and, second, both parametric and
non-parametric updating, very few techniques are
available from the published literature that can handle
these constraints.® For an illustration of the lack of
techniques relevant to the nonlinear world, the reader is
invited to review from References [4-5] the state-of-
the-art in model updating technology. Among the
earliest and most promising work in test-anaysis
correlation for nonlinear dynamics, we cite the work by
Hasselman et a. [10] and Dippery et a. [11].

Generally, parametric optimization is achieved by
minimizing a“distance” between experimental data and
numerical predictions, whether this distance is
evaluated in the time or frequency domain. The
optimization problem is formulated as the minimization
of the cost function shown in eguation (1) where the
first contribution represents the metric used for test-
analysis correlation and the second serves the purpose
of regularization
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® Techniques are available from the system identification
literature for identifying nonlinear responses and fitting
parametric models. An example is the application of Voltera
kernels. However, in the overwhelming magjority of cases, the
type of nonlinearity and the corresponding mathematical
model must be known ahead of time. This is not practica
when dealing with complex engineering applications.
Similarly, the reason for emphasizing both parametric and
non-parametric identifications is because all sources of
uncertainty and modeling errors may not be known, in which
case a non-parametric technique (ak.a total uncertainty,
residua approach, etc.) isthe only possible alternative.



Parameters {p} in equation (1) represent the subset
of design variables selected to be optimized. The
model’ s input-output relationship is denoted by

y(® =M(p, 1) &)

where y(t) represents the desired set of outputs
(essentially, time-domain responses) from which the
features {R;} are estimated. The model defined in
equation (2) can have an arbitrary form (modal, linear,
nonlinear, implicit, explicit, etc.) and an arbitrary
purpose (high-fidelity prediction, phenomenological
extrapolation, reliability assessment, etc.). This is
somewhat irrelevant to the discussion although the
large majority of FE model updating techniques assume
a linear, modal simulation. The main three ingredients
of FE model updating are:

1) Features. Features {R;} are the time-domain or
frequency-domain quantities defined for the
purpose of test-analysis correlation. For linear
dynamics, the simplest and most popular of al are
the resonant frequencies, mode shapes and modal
damping ratios [12]. Two other important features
that we cite for completeness are the force and
hybrid modal residues defined in References [13]
and [14], respectively. Feature extraction for
nonlinear experiments is addressed in Section 5.2.

2) Metrics. The metric is defined as the norm used
for comparing the features {R;} extracted from the
test and analysis data sets. The weighted Euclidean
norm adopted in equation (1) is a popular choice
because it facilitates algebraic derivations. This
choice is generally not an issue because al norms
are equivalent in finite dimensional spaces.
However, in the context of model validation for
nonlinear, stochastic simulations, such metrics
become statistical hypothesis tests.

3) Constraints. Constraints such as pmin < P < Pmax
are generally added to the formulation to filter out
local minima that would not be acceptable from a
physical standpoint. Accounting for constraints
requires efficient optimization solvers that may not
always be readily available.

4) Optimization. Many optimization solvers can be
implemented depending on the availability of
gradient and Hessian information [15]. Global
search methods such as genetic algorithms are
sometimes used with great success but their
computational burden makes them impractical
when dealing with real-world applications.

5) Weighting. Weighting matrices in equation (1) are
generally kept constant and diagonal for
computational efficiency. They can also be defined
as covariance matrices which then formulates a

Bayesian correction procedure, as shown in
Reference [16]. The only rea difficulty is to track
the evolution of the covariance coefficients as
parameters in the model are adjusted.

6) Spatial Incompleteness. The number-one issue in
FE model updating is the mismatch between sensor
locations and degrees of freedom of the model. In
the linear domain, modal expansion techniques
have been proposed to expand the identified mode
shapes [17-18]. Model reduction is an aternative
that reduces the FE matrices and force vectors
down to the subset of measurement locations.
Many techniques have been published in the past
three decades to achieve this objective, a recent
review of which can be found in Reference [7].
Nonlinear model reduction is being studied but
rarely in application to structural dynamics.
Attempts have recently been made to assess the
efficiency of nonlinear model reduction in the
context of nonlinear FE model updating [19-20].
These results are preliminary and we believe that
more research is required to demonstrate this
concept. In addition, nonlinear model reduction
techniques are generally based on moda data
which reqguires that the eguations of motion be
linearized. This is a severe limitation when it
comes to analyzing systems with discontinuous
nonlinearities such as contact. Unfortunately, the
same argument applies to modal expansion.

5.2 Feature Extraction

The overwhelming majority of FE model updating
techniques are restricted to linear models and modal
data. To analyze nonlinear systems, non-modal features
must be defined because the notion a “representative’
subspace spanned by a few low-frequency mode shapes
isreplaced by time-varying, state-space manifolds.

To date, very little work is available on the updating
of nonlinear FE models. Among the earliest approaches
that have been applied with success to realistic
testbeds, we cite References [10-11,21]. These methods
conform to the general framework presented previously
and they have in common that the features {R;} are
simply defined as the difference between time-domain
responses (such as acceleration, strain or pressure)
measured and simulated by the numerical model.

Instead of comparing explicitly, say, the
acceleration data, the approaches presented in
References [21-22] gather these time series at multiple
output locations into a matrix that can be analyzed
using the Singular Vaue Decomposition (SVD). In
addition to filtering out the measurement noise and
unessential dynamics, this procedure generates time-
varying, Karhunen-Loeve basis functions that span the
nonlinear manifolds the same way mode shapes span an



invariant subspace. Then, the features {R;} are defined
as the difference between test and analysis basis
functions (left singular vectors), energy contributions
(singular values) and time-varying amplification factors
(right singular vectors). Application examples
documented in Reference [21] demonstrate that this
analysis technique is very powerful for understanding
the nonlinear dynamics of a complex structure.

5.3 Optimal Error Control

With the conventional approach for solving inverse
problems, a parametric optimization is formulated by
defining a time-domain feature and by solving for the
optimum solution {p’} that minimizes the cost function
shown in equation (1). Obviously, this procedure must
be repeated over several time windows [tj;t;.y)] if the
design variables {p} are time-varying quantities.
However, nothing in the formulation of the inverse
problem (1) enforces continuity between the solution
fields obtained from models optimized within the i
and (i+1)" time windows. This issue is fundamental
because the sequence of optimized models will yields
discontinuous acceleration, velocity and displacement
fields which contradicts the laws of mechanics for the
class of problemsinvestigated here.

The only solution currently available is to re-
formulate the inverse problem as a constrained
optimization where the continuity of the solution field
is enforced explicitly. This strategy is based on the
theory of optimal control and it relies on the resolution
of multiple two-point Boundary Value Problems (BVP)
[11,23]. When satisfactory solutions of the two-point
BVP's are obtained, the adjusted numerical model is
guaranteed to match the measured data at the beginning
and at the end of the time window considered. A typical
implementation would feature the resolution of a two-
point BVP each time a set of features {R;} is estimated
for a given combination of design variables {p}. Since
this procedure is embedded within an optimization
solver, multiple two-point BVP's must be solved for.
Unfortunately, the impact on the computationa
requirement is enormous and practical applications
exceeding a few degrees of freedom in complexity
currently remain out-of-reach.

6. Model Validation

We have seen that, for a wide variety of
applications, techniques based on linear dynamics and
modal superposition are likely to fail. Hence, it is
critical to validate numerical models by correlating
transient test data rather than steady-state, modal data.
However, formulating correctly the inverse problem in
this case requires to solve multiple two-point BVP's
that exhibit prohibitive computational requirements, as
explained previously. Throughout Section 6, the
relationship between conventional FE model updating

and the “big picture’ of uncertainty quantification and
model validation is explored and specific technological
issues are discussed.

6.1 The Big Picture

Our “philosophy” is to replace the minimization (1)
by a methodology where error surfaces are generated
from the resolution of a large numbers of forward,
stochastic analyses, then, optimized to identify the
source of modeling error [24]. It is the alternative to the
correct yet computationally impractical formulation
discussed in Section 5.3. Figure 1 provides an overview
of model validation for nonlinear, stochastic dynamics.

Statistical _| Explicit FE
r Sampling ”| Analysis

L -
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Integration
1 T
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A
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Figure 1. Flow chart of model validation.

According to Figure 1, optimization parameters and
random variables are first defined. Multiple FE
solutions and multi-dimensional error surfaces are
generated from statistical sampling. Error surfaces
provide a metric for test-analysis correlation and model
updating. The metrics adopted may be defined as
dtatistical  hypothesis tests used for assessing the
consistency between a probabilistic FE simulation and
a series of test data sets. The “statistically most
accurate” model is then sought after through the
optimization of its design parameters. Where these
consist of random variables, the procedure must either
search for the most likely parameters (case where
distributions are known) or optimize the statistics (case
where distributions are somewhat unknown). Rather
than comparing the response output, the ability of a
probabilistic model to reproduce test data must be
assessed using the response’s probability or cumulative
density functions.

Besides having to account for uncertain inputs,
imperfect material characterization and modeling errors
during a design cycle, the other reason for this
approach is to recast model updating as a problem of
hypothesis testing. When the predictive quality of a



model is assessed, we believe that three fundamental
guestions must be answered:

1) Arethe experiments and simulations consistent
statistically speaking?

2) What is the degree of confidence associated
with thefirst answer?

3) If additional data sets are available, by how
much does the confidence increase?

Hypothesis testing permits to answer these
questions. The difficulty however is to assess the
minimum amount of data necessary to formulate a
meaningful test and to implement such a test for large-
scale, numerical simulations. Although hypothesis
testing is well-known, very little literature is available
on the subject of “population versus population”
testing. This makes the whole procedure a non-trivial
task and a matter of open research to a great extent.

6.2 Model Updating vs. Model Validation

We would like to emphasize that model validation
is a broader concept than model updating. A numerical
simulation is not necessarily validated after the output
has been compared to test data and the model has been
updated. Instead, it is generally agreed upon that new,
well-thought strategies must be established for model
validation. They integrate tools such as component
testing, full-scale testing, test-analysis correlation,
statistical analysis and FE model updating. Figure 2
illustrates the implementation of model validation
where errors caused by our imperfect knowledge of
“separable” physics (that is, effects that can be
decoupled from each other) are identified first. Then,
the sources of variability and modeling errors that may
result from the successive steps of system integration
are identified and corrected. At the separable physics or
continuum levels, phenomena are generally complex
but dedicated and well-controlled testing procedures
can be defined. At the sub-assembly or full-scale levels,
testing is difficult and variability may be a concern but
few unknowns remain to be inferred from test data.

Full integrati More
ull integration Engineering

Sub-assembly
Component
Continuum

More Sub-grid

Physics
Y v Separ able effects

Figure 2. Successive levels of model validation
for a complex experiment.

In addition to recognizing that a model must be
gradually validated, great attention should also be paid
to the operating conditions and the model’s purpose.
Clearly, two different experiments and probably two
different models must be developed when the same
component is subjected to random vibrations or shock
response. The purpose of a model is also of paramount
importance because it dictates the features and metrics
on which the validation should focus. As a result,
model validation must be thought of in terms of a
matrix of experiments rather than a single test-analysis
correlation study. An example is provided in Figure 3
where the coupling between models and loads applied
is illustrated. To be complete, a third axis that would
represent the model’ s purpose should be added.

Modal Transient  Shock
Analysis  Testing Response

>

Linear Loading

Visco-elastic I:

Orthotropic

v'  Isthephysics V
v under stood?
M odel v Arededicated tesbeds
available?

v Aremodelsvalidated

at the component-level?
v

Figure 3. Matrix of model validation experiments.

An example of practical implementation of this
paradigm is the validation of complex engineering
simulations performed at LANL for the ASCI program.
The application illustrated in Figure 4 represents the
highly transient response of a threaded joint assembly
due to explosive loading. Prior to assessing the validity
at the full-scale level, phenomenological testing is
performed to identify the characteristics of an
aluminum-to-steel contact pair subjected to nonlinear
vibrations. Then, a controlled experiment is designed to
validate the model of a hyper-elastic material when a
shock produces high-rate deformations in the material.
Finaly, these various components are integrated
together. The resulting nonlinear and explicit FE model
features more than 10 million degrees of freedom.
When running on an ASCI platform with 700 dedicated
processors, one hour of CPU time is required to
simulate 10°® second of response. Full-scale, explosive
testing is performed and model validation is used to
identify specific joint properties as well as the degree
of variahility of the assembly.
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Figure 4. Implementation of model validation for the ASCI program at LANL.

The ultimate task of verifying that predictions of the
optimized model are correct remains a challenging one.
This is nothing less but the old mathematical dilemma
between interpolation and extrapolation. Our opinion of
thisissue is that model validation does not exist. There
is only model “invalidation” as demonstrated by
Pearson’s work on hypothesis testing [25], that is, a
model may be considered correct as long as it can not
be proved wrong. Practically, this means that:

1) Data sets not used during the validation step
arerequired to assess the predictive quality of a
model.

2) Probabilities must be assigned to each model
developed to reflect the degree of confidence (or
lack of confidence) in their predictions.

6.3 Orientations of the Research

We have seen that modal-based criteria form the
vast majority of FE model updating techniques. These
become rapidly obsolete when systems are subjected to
high-frequency excitation, when variability is an issue
of concern or when the dynamics of interest are
strongly nonlinear. In the remainder, five issues are
discussed that are critica to the success of model
updating and model validation for nonlinear dynamics.

1) Uncertainty quantification. The success of any
model validation depends on the ability to quantify
uncertainty. The current approach in statistical
sciences is to analyze the error of the model
output. This is not efficient for identifying the
sources of discrepancy between test and analysis
results. Instead, the uncertainty should be built at
the beginning of the analysis, then propagated
through the forward resolution. One potentia
approach is Bayes inference [26] where the
posterior probability, that is, the probability of the
model {p} given data{y} isobtained as

P(ply)= P(yllr(ay)g’(p) 3)

What is therefore important is not necessarily
that the correlated models reproduce the responses
measured during a single test but that they predict
the response levels with the same probability of
occurrence as the one inferred from test data.

2) Sampling and fast probability integration. The
notions discussed here rely strongly on the
capability to propagate uncertainty and/or
variability throughout an analysis. For large-scale
applications featuring nonlinear models, Monte
Carlo simulations remain computationally too



3)

4)

5)

inefficient when it comes to predicting unlikely or
catastrophic events, which is one of the main
reasons for carrying out an analysis. Stochastic
finite element techniques [27] and fast probability
integration methods [28] must therefore be
developed and interfaced with engineering codes.
Accelerated sampling methods such as the Latin
Hypercube Sampling are efficient alternatives [29].

Generation of meta-models. Efficient numerical
optimization requires that the objective functions
be obtained at low computational cost. Therefore,
meta-models or fast running models must be
generated to replace the expensive, large-scale
simulations. One difficulty of fitting meta-models
is efficient sampling, that is, the generation of
sufficient information in regions where the
feature’s joint probability density function is
maximum. This particular issue is the focus of
recent advances in the statistics community [30].

The second direction of open research is the
implementation of probabilistic meta-models when
the objective of model validation is to account for
sources of variability in the experiment and the
numerical model. Stochastic processes can aso be
included to propagate other sources of discrepancy
between test and analysis data such as numerical
and truncation errors or to bound the experiment’s
total uncertainty. This procedure, well-known in
the geo-physics community, is progressively being
tested and applied in structural dynamics[8].

Feature extraction. Large computer simulations
tend to generate enormous amounts of output that
must be synthesized into a smal number of
indicators for the analysis. This step is referred to
as data reduction or feature extraction [31]. These
features are typically used to define the test-
analysis correlation metrics optimized to improve
the predictive accuracy of the model. The main
issue in feature extraction is to define indicators
that provide meaningful insight regarding the
ability of the model to capture the dynamics
investigated. Features that we are using to analyze
nonlinear, transient data sets include: the RMS
error of time series, the principa component
decomposition; the shock response spectrum; ARX
and ARMA-based features, the power spectral
density (Fourier transform of the auto-correlation
function of a signal); higher-order dsatistical
moments; and probability density functions.

Statistical hypothesis testing. One of the open
research issues that this work has identified is the
problem of establishing a correlation between
multiple data sets. By this we mean “assessing the
degree to which two populations are consistent
with each other.” Such statistical consistency can

be assessed using the Mahalanobis distance and a
standard, multivariate Hotelling's T? test. This
statistics, however, can only compare the mean of
two distributions. One of the only possibility
available for testing both mean and variance is to
caculate Kullback-Leibler's relative entropy
defined as the expected value of the ratio between
the PDF's of the two populations. These statistics
are attractive because they are independent of the
parent distribution.

The computational requirement associated with
this procedure may become very important because
the probability distribution of each feature
considered for test-analysis correlation must be
assessed for each candidate design evaluated
during the optimization. This, however, is the only
possibility to guaranty at a given confidence level
that the numerical simulation is validated in the
context of uncertainty propagation.

7. Conclusion

A genera framework is discussed for validating
numerical models for nonlinear, transient dynamics. To
bypass difficulties identified when applying test-
analysis correlation methods to nonlinear data sets,
inverse problems are replaced with multiple forward,
stochastic problems. After a stetistical metric has been
defined for comparing test and analysis data, response
surfaces are generated that can be used for assessing in
a probabilistic sense the quality of a particular
simulation with respect to “reference” or test data and
for optimizing the model’s design parameters to
improve its predictive quality. Current directions of
research are stated throughout this publication. Several
experiments have been conducted at Los Alamos
National Laboratory in support of our ASCI and code
validation programs to validate the models of complex
engineering simulations. Severa illustrations of this
methodology and preliminary results can be obtained
from References [3,24].
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